PDF: Morph 4 Dimensions Compared to Morph 2

[From Alan Ball: January 12, 2010]

A while ago you requested some orthographic views with key dimensions called out for the M4. Check out the drawing I have attached here. Is this what you had in mind?

For comparison , I have included a drawing of the M2 geometry, which I documented in CAD and was measured and confirmed against M2. As you can see, the basic dimensions are almost the same, with differences occurring due to M4 greater range of morphing motion.

CAD files of M4n - wood model

[From Alan Ball - January 12, 2010]

Attached to this email message is a pack 'n go of the solidworks model. Please note that I built this in SW 2009, so you may not be able to open it. With this in Mind I am sending you some edrawings, and also a step file and an IGES file( in the zip file). I hope this is sufficient for you to see what we have been up to.

Do You Love Seeing the Details?: Two Years of Morphing Handcycle Photos and Videos Examine Every Moment, Every Measurement

CONFUSION ALERT! What looks like image galleries below are really SCREEN GRABS of the Picasa Web Albums galleries! So no, you can't click on the little images to see it bigger. Instead, you need to click on the ORANGE links to see Picasa Web Album it is associated with (and alas doesn't go to if you click on the photo itself!

Note: When you play a video, you can choose "View HQ Video" on the upper right of the screen. This will make all subsequent videos at the higher (much better!) resolution. The original videos were shot at 800x600 with a Panasonic TZ1 camera, and later videos are shot at 1200x800 with a Panasonic TZ5 camera. Find this video to learn why popcorn is so important to the Morphing Handcycle project.

Online Meeting: Graham Butler Rejoins Morphing Handcycle Team - We Move Towards Manufacturing

Graham Butler with the very earliest roadable version of Morph 2 - April, 2007. The seat is a piece of plywood, and and the seat back is just the frame. We are on the streets of Dorchester, MA, behind the Nexus Machine and Gallery machine shop where Graham constructed Morph 2. Note the big adjustment struts near his hand. These were intended to adjust the angle of the seat after morphing. They have been replaced by automatic linkages within the morphing design.

We took a very important step today towards getting the Morph into production. We discussed our future in an online meeting conducted with Rory McCarthy (Bath, Maine) the inventor of the Morph , Bill Warner, co-founder of Move With Freedom, and project manager (Cambridge, MA), Alan Ball, industrial designer (Somerville, MA) and Graham Butler, mechanical engineer and founder of www.intrepidequipment.com and the engineering lead on Morph 2. (By the way, we used www.yuuguu.com for the online screen sharing, and it worked very nicely, and allows up to 5 users for free.)

For about a year now, we have been working to refine the design we now call Morph 4, and solve key issues such as morphing geometry, steering geometry, and seat adjustment and seat tilt correction during morphing. With the latest design for Morph 4 delivered by Alan Ball on Christmas Day, complete with 1/4 scale wooden model see: http://morphhc.posterous.com/a-christmas-morph-alan-ball-delivers-a-scale, we now have a design that is ready to move forward to production.

Graham Butler was our original mechanical engineer on the project, and designed the Morph 2 and Morph 3 prototypes. (We then took the lightweight front end of Morph 3 and mated it with the smooth-morphing rear end of Morph 2, and created Morph 2.5, which is what Rory is riding now.)

Now Graham will be taking the mechanical engineering lead again to bring Morph 4 forward into a production vehicle. Graham’s company is currently building handcycles, so this production knowledge will applied to the design of Morph 4. Welcome Graham!

Key Items to Work Out For the Production Morph 4.
1. The Footrest - We need to design a great footrest that handles the wide range of issues that the Morph presents. First, now that the seat automatically adjusts as you morph up and down, your seat bottom will be tilting at different angles relative to the footrests. This means that that your feet will move up and down in the footrest. We’ll need some kind of movable element to give you support at the bottom of your foot. And the under-the-leg supports will also have to allow sliding of the leg up and down.
2. Adjustable Lift System - A gas shock (shown in green) provides the lift that makes the rider “weightless.” There is no motor for morphing. You just grab the wheels, and because the gas shock is compensating for your weight, you can pull yourself up with no effort.

But the lift system has to balanced to each rider. One way to do this is to order each gas shock at a custom force. But this means that the others cannot try the Morph, or if they do, they won’t have that wonderful weightless feeling. Too heavy, and they will morph down quickly and have a hard time getting up. Too light and they won’t be able to morph down and will pop up.

So, we desire an adjustable lift system. Ideally, one could adjust the lift in seconds, either to suit their riding tastes, or for a new rider. We don't believe you can adjust the gas spring itself. However, you could remove and reinstall the gas spring in a slightly different location so it has a different mechanical advantage. And, this could be combined with some mechanical springs that could be tensioned more or less to adjust the lift.

We believe that the spread of the morphing concept depends on people trying the machine, and that can only happen if the lift system is easily adjustable.
3 - Mid Morphing Lock - Currently, the Morph locks in the low position, and in the high position. (These latches, by the way, have been problematic as far as reliability.) For Morph 4, we believe that some mid-morph locking positions are important. For example, you’d like to lock the the morph at a convenient height for wheelchair transfer. You’d also like to lock it at a good “upright handcycle” height for riding around town, rather than at the fastest road speeds which would occur in the low rider mode.

Designing the mid-morph lock is tricky, because the morph moves over such a wide range. Here I show a mid-morph lock concept (in yellow), that will lock in a few positions, and then stows below the black morphing arm. The rider rotates it up to use it.

Philip Robson and Advanced Tubular Polymer Technology (Drinking Straw) Demonstrates an Intermediate Lock for the Morphing Handcycle

The Morphing Handcycle has always had a tricky issue: can we stop the morphing part way for getting on and off, or even for riding? So far, we haven't been able to figure out a way that works easily, and that can handle the forces that occur during riding. On Christmas Day, Alan Ball delivered this wooden model with the goal that we could figure out some of the remaining design issues by using the 3D system used by the ancients: Something you can hold in your hand and grunt at.

Here's our advanced polymer, along with a linear fiber-based green material (wood). This unit will stow below the two flanking tubes, leaving room for the red part of the frame to nestle between the two black parts. Then the rider will deploy the lock by rotating what here is a wooden dowel.

Here we see the lock deployed to it's proposed "middle" position.

Here, the lock is rotated further forward, and will lock the bike at a higher position. Note that the lock is mostly in compression, but there will be some of positive lock to handle negative forces (tension)

Now we're in the lowest position that the lock can handle.

A wider view of the lock, now in the lowest intermediate position.

The lock in the "stowed" position. Well, kind of. It will actually have to stow below the flanking members. The hinge that holds the lock will also be a bridge that supports the two parallel frame members.

This is how the lock rotates into position. It will mate with something that that's on the red main tube.

Philip Robson helped design this intermediate lock. Bill and Philip worked out many different positions for the lock, and this one turned out to have the best characteristics. My niece, Molly, gets much credit for bringing Philip to visit Boston from London, where they both live.

A Christmas Morph! Alan Ball Delivers a Scale Model of Morph 4 on Christmas Day. It's beautiful, sexy, and sleek.

On Chrismas Day, Alan Ball brought over a wonderful present - a working, 1/4 scale model of the Morph 4 prototype. Jake, our dog, is check Alan out. The wonder of this design is in how simple it looks, but how much it does. I believe we are now ready to design in metal, and build five or six prototypes so people can really experience what its like to ride a morph. What it's like to "get back the Z", meaning that you can go up and down, and not just ride around at 18-21" off the ground in a wheelchair. The Morph goes from bar-stool height in the high mode to a low and fast 13" off the ground for speed in low rider. Both modes are a thrill, but you just can't explain to people what it's like to be riding at bar stool height. You see everything in a new way compared to a wheelchair. So we need to make some prototypes and let people try it for themselves. More details about Move With Freedom, our non-profit, is at www.movewithfreedom.org.

Our previous iteration of the Morphing Handcycle wood model was much more complex in look and form, although all the joints are actually in the same place. The goal of bringing the Morph back to its "planar" and more "bike like" form has been achieve in the new red and black model. Nicely done, Alan.


Watch as Alan move the morph and his daughter does a little narration.

Our previous design sought to move the rider load closer to the rear wheels, so the frame members moved to the outside. Nice idea, but the bike ended up with a wheelchair look, and it felt more complex. It also lost that "I've gotta have that" look and feel. So we want back to the drawing boards. (Well, Alan did.)

Ah, what a difference a day makes. Okay, many days. But now we have that beautiful look again, and the Morph has all the features and range that we're seeking.

Cool wheels, huh? That's plexiglass with a notch machined on the outer edge to hold O-rings. Hey, I get credit for that one.

Again, for contrast.

The magic of the blue joints. These are the magic links that make the seat bottom and the seat back adjust their angle as you morph up and down.

Note how far above the red main tube the back of the seat bottom is.

Now look at the red main tube. It rises almost to the bottom of the seat. But it doesn't tilt directly with the red main tube, which is how things used to work.


In this very brief, video, you can see how the joints work. The seat bottom is mainly tied to the red tube on the front of the seat, and to the lower (black) link arm for the rear of the seat.

Almost Ready to Cut Wood: A Narrow-Frame Design for the Morphing Handcycle: SolidWorks for a Working Scale Model

We are heading towards a "Reference Design" for Morph 4, which we hope will the the configuration that we build six prototypes. This SolidWorks model shows a colored model of a wood model that we will use to finalize the design. The finished bike will not be made of flat sections like this!

This model is deceptive, because it looks so simple. But in fact, it encapsulates almost a year of work to figure out how to get everything we want in the Morph to all be possible in a single design: 

- A good, very low rider height in the Low Rider Position
- A full High Rider position
- Self-adjusting seat bottom so you don't tilt too far forward when you morph up.
- Self-adjusting seat back to you are comfortable in both positions. (looks a little vertical in the high mode here, but its adjustable.
- Narrow, bike-like frame
- Single gas spring (not shown). It will be mounted between the arms. This will be nice and strong.
- Slug seat bottom and seat back. (Not shown, but the room is there to do it.)
- Capability for main tube to have a coupler so you can break the bike apart for travel by car, plane, etc.
- Light weight
- Simplified construction
- Proper steering trail in high and low modes (not easy to get right!)
- Easy to build. (ie simple parts, no fancy construction needed.) (after all, this one will be made out of wood as a scale model)

High mode. Back is a bit vertical, but we can adjust based on length of the green and yellow arms.

Low mode. Note that the dowels are not shown. These will hold the wood model together and let it morph.

High mode.Notice that the seat is tilted more towards the blue tube now. This corrects the tilt that occurs when you morph up.

High Mode Isometric for wood model.

High mode iso. Remember, this is a wood model. Next step is to decide on materials, and on other items, like foot rests, locking mechanisms.

Here is the list of what remains to be figured out after this reference model and wood model:

1. Main tube materials selection - chrome molly steel most likely for main tube. (Coupler not possible in aluminum.)
2. Other members materials - probably many will be aluminum.
3. Design for the morphing joints - how to make it light, strong, reliable, easy to build, easy to repair.
4. Slung seat bottom.
5. Seat bottom adjust mechanism - we show the mechanics, but not the design itself.
6. Slung seat back
7. Seat back adjust mechanism - again, we have the mechanics, not the design.
8. Bike component selections
9. Foot rest design (this always gets too little attention!)
10. How to lock in high and low mode. (and with high reliability! Our current latch design has had its reliability issues.)
11. Desired: a way to lock the bike in intermediate positions and even ride in that mode. (Harder than it sounds!)

And then some things that may seem like minor add-ons, but they matter:

12. How to hold crutches, and make it fast and easy to get them on and off. 
13. Storage space - how do you carry groceries, for example?
14. Water bottles

Additional design issues:

15. How to make it easy to get on and off. This relates to how often people will use it.
16. Design care to be sure the high mode stays short and turning radius is good.
17. Design of pedals so rider can (ideally) turn 90 degrees in high mode)
18. Design of foot rests so rider can turn as sharply as possible in low mode. (ie avoid footrests hitting ground, or maybe they have movement)

Input to Alan for finalizing the wood model:

1. Look at verticality of seat back in high mode. Seems too vertical. Fix before we cut wood!
2. Make the steering work. (Right now its fixed.) Key design issues relate to turning at the steerer tube.

Otherwise, look good to go to wood. The nice thing is that it's very inexpensive to make a wooden model with the technique you've worked out.

Here is the e-Drawings file for the SolidWorks model:  You'll need the free e-Drawings Viewer (for Mac or PC)
(Note: this model is a little tricky because it is set to a small scale. But if you're careful you can get the views that I showed.)


Morphing Handcycle Gets Closer to a Build Version - Narrower Frame

Side view - low rider mode.  (The "front" designation from Solidworks isn't true...I avoided capturing it in the following screen images.

Had an online session today with Alan Ball, Rory McCarthy, and Bill Warner. The Morph is Rory's invention, Alan is providing industrial design, and Bill is providing project management and design input.
Side view - high rider mode.
Top view - low rider mode.
Front View - Low rider mode. Not how very low this vehicle goes.
Front View - High rider mode - and in high mode (like all our designs) the bike goes to a seating height above the rear wheels, which are 27"
Iso View - High rider mode. Note the twin tubes for the upper and lower link arms. This lets the purple frame nestle between them in the low mode.
Low Rider Iso. Seat is still in the works.
The red area shows the single gas shock in this design. It is compressed here, at a length of 9.7 inches.
High Rider Mode - Gas spring is at 14.1 inches. We are planning on a single gas spring in this design. Morph II had two gas springs.
Still some interference between the shock and the main tube. Will fix this.
Alan is working on the tube paths. The version we currently have, with 12" radius curve, puts the tube too close to the seat supports, and too close to the seat back. We working on this issue a bit today.
The blue tube should really go through the center of the grey seat support.
The orange circle represents the seat support. The purple tube needs to come back further and then rise at a steeper angle.
Can a 10" radius do it. No.
Can a 6" radius get the tube in the right position? No. And 6" is the very smallest radius that could be considered in a 2" tube. (and that's not a great idea.)
Here we remove the radius, but we still have interference.
Now we move the tube back further and angle up.
This is basically an angle-cut weld. (Not shown exactly that way.) High rider mode.
Angle-tube in low rider mode.
Still some interference of the top seat support. 

Alan is going to work some more on the frame design and resolving the interferences. Then our plan is to make a new wood model which we'll use to nail down the final frame design. Its much easier to discuss ideas when you have an actual model in your hands.

The Morphing Handcycle Gets a Simplified Tubular Frame - Getting Much Easier to Build

Alan Ball, Rory McCarthy, and Bill Warner got on the phone today to go over the latest design. Here it is, with a simplified tubular frame. Easy to build

Low rider mode. Not that seat back and many other parts are not shown in this simplified model.

High Rider side view

High Rider iso

Low rider side view. We added some color to make it clearer. Main tube looks like it wants a bend.

Low rider top view

Low rider front view

Low rider iso.

High rider iso with coloring.

High rider side view with coloring

High rider to view

High rider front view

Lets curve the main tube. Try 6" radius.

Curved tube at 6" radius.

Higher radius -- 10 "?

Higher radis - 12". This looks nice.

Iso with curved tube 12" radius.

Curved.

Curved.

Curved.

Curved.

We agreed that the function looks good, and now we just need to talk about some more asthetics.

Morph HC Online Sketch Session with Rory McCarthy and Alan Ball - We Start Curvy and Go Straight.

We started the session by looking at the issue of curved vs. straight tubes. Alan turned on the layer that shows where the main joints are.

Just in case you want some dimensions and angles.

Curvy Morph in upright mode. Bill expresses concerns about curved tubes. One concern is how it looks...not as angular as our earlier designs, and also the difficulty in fabrication. Discussion moves to what would a design with straight tubes look like. Alan made some screen captures and we did some overlay drawings.

Here we straighten some of the tubes.

Now the upper tube has once joint, rather than two.

Lower member also now has one joint.

Now we look at straightening the main tube. But it bangs into the seat, which can change angles.

Now the main straight tube is below the seat joints.

Adding the gusset tube to the head tube.

Another design for the main tube. One little weld, and then it hits the head tube in the middle.

How it looks in low rider mode.

Now exploring how to make the members look good in low rider. Want them to be parallel.

The upper, blue member now has an angle that causes the tube to be parallel to the green one on the bottom.

Same design in high rider mode.

We discussed that there are 6 places where we have a fork. (oh my!). Need to figure out something that is lightweight, low cost, and looks good, and then gets repeated six times.

The center upper drawing shows a very short fork at #6.

We agreed that Alan should take another pass at the frame design, and we'll get back on the phone to refine further. Note that the initial curvy frame that he designed was about 3 hours of work! We are getting very fast at being able to make new morph designs in very minimal time.