Five Days to Go: A Look At the Morph under Construction

Today is October 23. We have five days to go before the Oct 28 unConference, and construction of the Morph is hot and heavy in San Diego.

Earlier, on September 17, I visited Graham Butler and the Morph Team to review the final design of the Morph, and to plan how the first production prototype of the Morph could be shown at the upcoming MassTLC Innovation unConference. (bit.ly/masstlc2011) Above, Graham holds the front end of the Morph. The upper part is aluminum, while the lower fork is made of steel.
Intrepid Cycles is located in San Diego. Graham also builds frames in his home country of Brazil.
A screen shot from Graham's computer. We tested different rider sizes. It looks like Bill and Rory both fit easily on the same bike. The footrests mainly take up the difference, along with the adjustable pedal post.
Seth Arseneau drove from Albuquerque to work with us. Seth is handling the rear, morphing part of the bike, even though here he's holding the front end which was made by Graham and company in San Diego. Seth is focused on some of the highly machined parts that make the Morph do its magic.
These are the "upper morphing arms." They allow for an adjustable lift system so a variety of rider weights can be accommodated with a single version of the Morph.

This is the assembled upper morphing arm. The silver parts have been machined out for weight reduction and cool looks. The tool did not cut all the way through so we maintain maximum strength in the arms. Note the metal table. This is Seth's very cool fast welding table that makes holding weldments easy.

The upper morphing arm, upside down. You can see the lead screw and the "carriage" which allows the mechanical advantage of the gas springs to be changed by turning the bolt on the end of the lead screw.
It may seem like a minor thing, but I need a crutch holder so I can stow my crutches when I ride. We used a couple of pens taped to together on the scale model to see how that might work.
As the Morph moves down, the crutches will tilt back.
When all the way down, the crutches will tilt back nicely. Maybe we should have a little flag on them for visibility.
Here Graham is checking out the Morph with a proposed storage system that hangs under the seat. (shown as a rubber band.)
Bill's idea is to have something that hangs below the seat and can hold lots of groceries, for example. Especially in high rider mode.
This is the Schlumpf Speed Drive. It gives a 2.5x increase in gearing when you hit the button in the crank center. This 2.5x is important, because we have a very small front wheel...only 18" in diameter.  This is 1.5x smaller than a 27" (700c) normal bike wheel. So, when you morph down, you'll engage the Speed Drive and you'll have plenty of gearing to get all the speed that the low, fast, highly maneuverable Low Rider mode offers.
Bill used his Travel Bike on the trip to San Diego. The front end of the Travel Bike has many similarities to the Morph. Same 18" wheel. Same 8-speed internal hub with brake (from Shimano). Also, a couple bungee cords are holding my wheelchair on the back, and that also acts as a luggage cart. Nice setup!

Photos: Quick Release "Easy On" System

[From Graham Butler, Janaury 31, 2011]

Here are the pictures of the quick release system for the front end.

They guy who bought this bike loves it.  Hasn't had any problems and has just ordered a second one the same to keep at his cabin.

Morph will use similar release mechanism to make it easer to get on the bike.
Press button to release.
Front end pulls away
Pleanty of clearance to bring feet over. Not that this bike (like the Morph) is fitted with a coupler to allow the bike to break down for travel and stowing in a car.
Then replace strut for riding by clicking it in the receiver.

The Gas Strut Challenge - Single Large Gas Shock

The hard part about this new design is the gas strut.

Last time we did this, we had an inkling of the strut that we were likely to use as we were designing the frame and morphing geometry, which made it relatively easy to fit.

The challenge now is a little more complicated:

 1. We are traveling through a greater range of morphing motion, so
    the range of motion of the strut (Stroke length) has to be much
    greater unless we are to overload the frame.

 2. The geometry now lends itself nicely to a single strut.  This,
    however means that we will need twice the force out of a single
    piston.  It also means that you only need to purchase one per
    handcycle.

So the result is that we need a substantially longer shock that is almost twice as stiff.

Figuring this out was something of an iterative process:

I know that we will potentially need to lift at least 250lbs in the seat of the handcycle, and that the geometry of the strut with respect to the linkage arms in low rider mode would affect the mechanical advantage and thus the strength of the spring that was needed.   The spring could only fit a few ways, so I found the strongest spring available off the shelf, and then designed the geometry to provide the appropriate force.

This spring has 562lbs of force.  The barrel is 1.1 inches in diameter, and a stroke of 11.81 inches.  It is also a reducible force gas shock so it can be tuned down to lower forces.

Based on this I calculated where the pivots needed to be to generate 250lbs of lift.  It turns out that this point is almost half way along the upper linkage.  Then to fit the shock in I had to create an extension linkage to create some extra room for the longer shock.

This sounds very simple but fitting it into the geometry was really tricky.  Check out the attached screen shots.  Pay attention to clearance issues that limit the positioning of the shock.

Single large shock design.
Low rider. Note large shock retainer to give room for long single shock.
Mid rider 1

Mid rider 2
Almost all the way up.
Morphed up to high rider mode.
Closeup of single shock and lower link arm in high rider
Single shock rear oblique view.
Single shock side view.
Closeup of ball joint morphing joint.

The Morph Begins the Move From Wood to Metal: Initial Frame Designs From Graham Butler - Looking Great!

Graham Butler sent along a series of screen images in advance of todays online meeting of the minds between Morph inventor Rory McCarthy, design and manufacturing engineering from Graham Butler, industrial designer Alan Ball, and design consultant and project manager Bill Warner.

Above is the initial frame design for Morph 4. Wow, that is looking great!




This image shows the metal frame model on the left. The red members provide the flanking design needed for Morph 4. The green area just shows the chain path...there won't be any "green thing" on the chains!

Rear view of the initial Morph 4 frame design. 

Side view of Morph 4 initial frame design. Note that some of the wood structure is still shown for comparison on the front.

Wireframe shows the wood model.

The new frame will use an SNS coupler so the frame can be taken apart to fit in a car. This coupler requires steel or titanium, so this means the main tube will likely be thin wall chrome molly steel tubing. (Graham already uses this on his current handcycles.)

A closeup of the morphing arms. Not sure what these will be made of...probably aluminum. We're taking a cue from suspension mountain bikes, and we plan to use bearings on all the morphing joints, rather than bushings. Mountain bikes have moved away from bushings as they have been unreliable.

A closeup of the assembled morphing joint. I think there is a single bearing on each side, since there is a thru-axel.

Graham proposes using tie-rods for the automatic seat adjusters. This allows us to adjust their length to suit the user's preferences, and they already take care of 8 points of rotation at very low cost.

Tie rods under the rear portion of the seat bottom. These linkage cause the seat to move not with the main tube, but with the lower morphing arm. This provides the self-adjusting magic that make the Morph work just right.

How many joints? How many bearings?

Upper and Lower Link Arms :  4 joints, 8 bearings total

Forward seat tilt hinge, similar bearings to morphing joints? Thru axel? Probably 2 bearings.

Forward Seat Tilt Hinge: 1 joint, 2 bearings

Seat back articulation:  Just above red link arm on the bottom is a rotation point for automatic seat tilt.

Seat Bottom Pivot: 1 joint (maybe this one is a bushing.) Just above red link arm on the bottom is a rotation point.

Total joints and bearings:  

Upper and Lower Link Arms :  4 joints, 8 bearings total

Forward Seat Tilt Hinge: 1 joint, 2 bearings

Seat Bottom Pivot: 1 joint (maybe this one is a bushing.) Just above red link arm on the bottom is a rotation point.

Automatic Seat Tilt Tie Rods - 8 joints, 8 bearings

TOTALS:      Joints:  14 joints total (sounds like a lot, but suspended mountain bikes have many also.)

Bearings: 18 (wow), 8 are in the tie rods, 10 outside of tie rods

Here is the e-Drawings file for the SolidWorks model:  You'll need the free e-Drawings Viewer (for Mac or PC)

Online Meeting: Graham Butler Rejoins Morphing Handcycle Team - We Move Towards Manufacturing

Graham Butler with the very earliest roadable version of Morph 2 - April, 2007. The seat is a piece of plywood, and and the seat back is just the frame. We are on the streets of Dorchester, MA, behind the Nexus Machine and Gallery machine shop where Graham constructed Morph 2. Note the big adjustment struts near his hand. These were intended to adjust the angle of the seat after morphing. They have been replaced by automatic linkages within the morphing design.

We took a very important step today towards getting the Morph into production. We discussed our future in an online meeting conducted with Rory McCarthy (Bath, Maine) the inventor of the Morph , Bill Warner, co-founder of Move With Freedom, and project manager (Cambridge, MA), Alan Ball, industrial designer (Somerville, MA) and Graham Butler, mechanical engineer and founder of www.intrepidequipment.com and the engineering lead on Morph 2. (By the way, we used www.yuuguu.com for the online screen sharing, and it worked very nicely, and allows up to 5 users for free.)

For about a year now, we have been working to refine the design we now call Morph 4, and solve key issues such as morphing geometry, steering geometry, and seat adjustment and seat tilt correction during morphing. With the latest design for Morph 4 delivered by Alan Ball on Christmas Day, complete with 1/4 scale wooden model see: http://morphhc.posterous.com/a-christmas-morph-alan-ball-delivers-a-scale, we now have a design that is ready to move forward to production.

Graham Butler was our original mechanical engineer on the project, and designed the Morph 2 and Morph 3 prototypes. (We then took the lightweight front end of Morph 3 and mated it with the smooth-morphing rear end of Morph 2, and created Morph 2.5, which is what Rory is riding now.)

Now Graham will be taking the mechanical engineering lead again to bring Morph 4 forward into a production vehicle. Graham’s company is currently building handcycles, so this production knowledge will applied to the design of Morph 4. Welcome Graham!

Key Items to Work Out For the Production Morph 4.
1. The Footrest - We need to design a great footrest that handles the wide range of issues that the Morph presents. First, now that the seat automatically adjusts as you morph up and down, your seat bottom will be tilting at different angles relative to the footrests. This means that that your feet will move up and down in the footrest. We’ll need some kind of movable element to give you support at the bottom of your foot. And the under-the-leg supports will also have to allow sliding of the leg up and down.
2. Adjustable Lift System - A gas shock (shown in green) provides the lift that makes the rider “weightless.” There is no motor for morphing. You just grab the wheels, and because the gas shock is compensating for your weight, you can pull yourself up with no effort.

But the lift system has to balanced to each rider. One way to do this is to order each gas shock at a custom force. But this means that the others cannot try the Morph, or if they do, they won’t have that wonderful weightless feeling. Too heavy, and they will morph down quickly and have a hard time getting up. Too light and they won’t be able to morph down and will pop up.

So, we desire an adjustable lift system. Ideally, one could adjust the lift in seconds, either to suit their riding tastes, or for a new rider. We don't believe you can adjust the gas spring itself. However, you could remove and reinstall the gas spring in a slightly different location so it has a different mechanical advantage. And, this could be combined with some mechanical springs that could be tensioned more or less to adjust the lift.

We believe that the spread of the morphing concept depends on people trying the machine, and that can only happen if the lift system is easily adjustable.
3 - Mid Morphing Lock - Currently, the Morph locks in the low position, and in the high position. (These latches, by the way, have been problematic as far as reliability.) For Morph 4, we believe that some mid-morph locking positions are important. For example, you’d like to lock the the morph at a convenient height for wheelchair transfer. You’d also like to lock it at a good “upright handcycle” height for riding around town, rather than at the fastest road speeds which would occur in the low rider mode.

Designing the mid-morph lock is tricky, because the morph moves over such a wide range. Here I show a mid-morph lock concept (in yellow), that will lock in a few positions, and then stows below the black morphing arm. The rider rotates it up to use it.